A Case Study of Landfill Leachate Using Coal Bottom Ash for the Removal of Cd2+, Zn2+ and Ni2+

نویسندگان

  • Julia Ayala
  • Hugo F. Lopez
چکیده

The removal of Cd2+, Zn2+ and Ni2+ by coal bottom ash has been investigated. In single metal system, metal uptake was studied in batch adsorption experiments as a function of pH (2–3), contact time (5–180 min), initial metal concentration (50–400 mg/L), adsorbent concentration (5–40 g/L), particle size, and ionic strength (0–1 M NaCl). Removal percentages of metals ions increased with increasing pH and dosage. Removal efficiency at lower concentrations was greater than at higher values. The maximum amount of metal ion adsorbed in milligrams per gram was 35.4, 35.1 and 34.6 mg/g for Zn2+, Cd2+ and Ni2+, respectively, starting out from an initial solution at pH 3. Simultaneous removal of Zn2+, Cd2+ and Ni2+ ions from ternary systems was also investigated and compared with that from single systems. Cd2+ uptake was significantly affected by the presence of competing ions at pH 2. The results obtained in the tests with landfill leachate showed that bottom ash is effective in simultaneously removing several heavy metals such as Ni, Zn, Cd, As, Mn, Cu, Co, Se, Hg, Ag, and Pb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the effects of hydrological characteristics and design of municipal waste landfill on the leachate rate: a case study of Urmia city

Background and Objective: One of the major challenges facing landfill operation is the pollution caused by leachate infiltration beneath the landfill site. Comprehensive leachate management requires knowledge of production rate and factors affecting it Therefore, in this study, HELP software was used to calculate leachate quantity and analyze input data. Materials and Methods: After designing ...

متن کامل

Removal of Cd2+ and Zn2+ from industrial wastes using novel magnetic N2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide nanoadsorbent

In this workN2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide (DPD), was synthesized via reaction of 2-aminothiazole and 2,6- pyridinedicarboxylic acid in n-methylpyrrolidine. The obtained (DPD) was characterized with nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared (FT-IR) spectroscopy, and elemental analysis. Finally, a novel magnetic nanoadsorbent was synthesized by m...

متن کامل

Use of combined coagulation-adsorption process as pretreatment of landfill leachate

Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of ...

متن کامل

Synthesis, Characterization and Application of a Novel Zirconium Phosphonate Ion-Exchanger for Removal of Ni2+, Cu2+ and Zn2+ from Aqueous Solutions

A new category of hybrid organic-inorganic zirconium phosphonate, Zr[(O3PCH2)2NC6H4CO2H].2H2O was synthesized and the applicability of the prepared sorbent as an ion-exchanger for removal of Ni2+, Cu2+ and Zn2+ from aqueous solutions was evaluated. The characterization of the synthe...

متن کامل

Sorption of Cu(II), Zn(II) and Ni(II) from aqueous solution using activated carbon prepared from olive stone waste

The performance of olive stone activated carbon (OSAC) for sorption of Cu2+, Zn2+ and Ni2+ ions was investigated via batch technique. OSAC materials were prepared under different physially activation conditions. Olive stone waste was physically activated with N2 gas and steam gas at 900oC at 3.5h hold time (OSAC-3) was choice as the best one for Cu2+, Zn2+ and Ni2+ removal. Characterization for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016